Search results for "Marine Boundary-Layer"

showing 4 items of 4 documents

Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity

2014

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from…

Atmospheric Science010504 meteorology & atmospheric sciencesParticle numbergeneral-circulation modelmixing state010501 environmental sciencesEnvironmentclimate modelblack carbonAtmospheric sciences01 natural sciencesTropospherelcsh:ChemistryZeppelinobservatorietUrban Developmentddc:550Cloud condensation nucleiBuilt Environmentnumber size distributionsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesMicrophysicsparticle formationEarth / EnvironmentalCloud physicsatmospheric aerosolCAS - Climate Air and SustainabilityRadiative forcinglcsh:QC1-999Aerosolcloud condensation nucleimarine boundary-layerlcsh:QD1-99913. Climate actionClimatologyEnvironmental scienceClimate modelELSS - Earth Life and Social Sciencesoff-line modellcsh:Physics
researchProduct

Emission of iodine-containing volatiles by selected microalgae species

2014

In this study we present the results of an emission study of different phytoplankton samples in aqueous media treated with elevated ozone levels. Halocarbon measurements show that the samples tested released bromoform and different iodocarbons, including iodomethane, iodochloromethane and diiodomethane. Iodide and iodate levels in the liquid phase were representative of concentrations of surface water in a natural environment. Measurement of volatile iodine (I2) emissions from two diatom samples (Mediopyxis helysia and Porosira glacialis) and the background sample (F/2 medium from filtered natural seawater) showed that the quantity of evolved I2 depends on the ozone concentration in the air…

Atmospheric ScienceOzoneInorganic chemistryIodidechemistry.chemical_elementcoastalIodinegas chromatography/mass spectrometrylcsh:Chemistrychemistry.chemical_compounddiatom culturesmolecular-iodineDiiodomethanenorth-seaIodateatlantic-oceanchemistry.chemical_classificationparticle formationfungiHalocarbonlcsh:QC1-999marine boundary-layerlcsh:QD1-999chemistrygerman bightEnvironmental chemistryphytoplanktonSeawaterBromoformlcsh:Physics
researchProduct

Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

2013

Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I). The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface ob…

[SDE] Environmental SciencesAtmospheric Science010504 meteorology & atmospheric sciences[SDV]Life Sciences [q-bio]Tropical Tropopause LayerWind-Speed010501 environmental sciencesAtmospheric sciences01 natural sciencesDibromomethaneTroposphereAtmospherelcsh:ChemistryStratospheric Brominechemistry.chemical_compoundFlux (metallurgy)Ocean gyrePhysical Sciences and MathematicsGas-ExchangeOzone Depletion14. Life underwaterEmission inventoryStratosphere0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryAtlantic-OceanLife SciencesOzone depletionlcsh:QC1-999Halogenated Organic-Compounds[SDV] Life Sciences [q-bio]chemistrylcsh:QD1-99913. Climate actionMarine Boundary-LayerClimatologyPhytoplankton Cultures[SDE]Environmental SciencesPhotochemical Productionlcsh:Physics
researchProduct

The seaweeds <i>Fucus vesiculosus</i> and <i>Ascophyllum nodosum</i> are significant contribu…

2013

Abstract. Based on the results of a pilot study in 2007, which found high mixing ratios of molecular iodine (I2) above the intertidal macroalgae (seaweed) beds at Mweenish Bay (Ireland), we extended the study to nine different locations in the vicinity of Mace Head Atmospheric Research Station on the west coast of Ireland during a field campaign in 2009. The mean values of I2 mixing ratio found above the macroalgae beds at nine different locations ranged from 104 to 393 ppt, implying a high source strength of I2. Such mixing ratios are sufficient to result in photochemically driven coastal new-particle formation events. Mixing ratios above the Ascophyllum nodosum and Fucus vesiculosus beds …

i-2Atmospheric Science010504 meteorology & atmospheric sciencesFucus vesiculosusIntertidal zone010501 environmental scienceschemistry01 natural sciencesAtmosphereAlgaeMixing ratiomolecular-iodine14. Life underwater0105 earth and related environmental sciencesbiologyparticle formationlaminaria-digitataiobiology.organism_classificationLaminaria digitataquantificationmarine boundary-layerOceanographyin-situ13. Climate actionchamber experimentsEnvironmental scienceBayAscophyllumAtmospheric Chemistry and Physics
researchProduct